Berotegi efektuaren jatorri kuantikoa

Quanta Magazine

Karbono dioxidoak beroari eusteko gaitasun handia du, eta, aurkitu dutenez, bere egitura kuantikoaren berezitasun baten ondorio da. Aurkikuntzak edozein informatika ereduk baino hobeto azalduko luke klima-aldaketa.

1896an, Svante Arrhenius fisikari suediarra konturatu zen karbono dioxidoak (CO2) Lurraren atmosferako beroa harrapatzen duela. Gaur egun, gertakari horri berotegi efektua deitzen zaio. Harrezkero, egungo klima ereduek, gero eta sofistikatuagoak diren horiek, baietsi egin dute Arrheniusen ondorio nagusia: atmosferan CO2 kontzentrazioa bikoiztu egiten den bakoitzean, Lurraren tenperaturak 2 eta 5 gradu Celsiusen artean egiten du gora.

Zenbakizko parekatze batek lagundu egiten du CO2 molekulak modu jakin batean mugitzen; hala, Lurreko askoz ere erradiazio infragorri gehiago atxikitzen dute beste modu batean mugituta baino. (Iturria: Kristina Armitage/Quanta Magazine; Matt Twombly Quanta Magazine-rako)

Hala ere, CO2-ak horrela jokatzearen arrazoi fisikoak misterio bat izaten jarraitzen zuen duela gutxi arte.

Lehenik eta behin, 2022an, fisikariek berotegi efektuaren “eskala logaritmikoaren” jatorriari buruzko eztabaida ebatzi zuten, hau da, Lurreko tenperaturak, CO2-ren edozein bikoizketaren aurrean (zifra gordinak kontuan hartu gabe) kopuru berean gora egiteko moduari buruzko eztabaida.

Udaberrian, Robin Wordsworth buru zuen Harvard Unibertsitateko talde batek aurkikuntza hau egin zuen: CO2 molekula zergatik den hain eraginkorra beroa harrapatzeko. Ikertzaileek molekularen egitura kuantikoaren berezitasun bat identifikatu zuten, eta berezitasun horrek azaltzen du zergatik den berotegi efektuko hain gas eraginkorra eta zergatik bultzatzen duen klima-aldaketa zerura gero eta karbono gehiago isurtzeak. Aurkikuntzak The Planetary Science Journal aldizkarian argitaratu ziren.

“Artikulu interesgarria da oso”, dio lanean parte hartu ez duen Oxford Unibertsitateko fisikari atmosferiko Raymond Pierrehumbert-ek. “Berotze globala eredu informatiko itxietatik sortzen den zerbait dela diotenei emandako erantzun egokia da”.

Ordea, berotze globala CO2-k mugitzeko dituen bi modu hartzen dituen zenbakizko parekatzearekin dago lotuta.

“Akzidente horrengatik ez balitz, gauza asko bestelakoak izango lirateke” dio Pierrehumbertek.

Ondorio zahar bat

Nola ulertu ahal izan zituen Arrhenius-ek berotegi efektuaren oinarrizko kontzeptuak mekanika kuantikoa deskubritu baino lehen? Dena Joseph Fourierrekin hasi zen. Fourier matematikari eta fisikari frantsesa orain dela 200 urte konturatu zen Lurraren atmosferak isolatu egiten duela planeta espazioaren hotzetik. Aurkikuntza horrek hasiera eman zion klimaren zientziaren esparruari. Ondoren, 1856an, Eunice Foorte estatubatuarrak ikusi zuen karbono dioxidoa bereziki egokia dela erradiazioa xurgatzeko. Jarraian, John Tyndall fisikari irlandarrak CO2-ak xurgatzen duen argi infragorriaren kopurua neurtu zuen, eta, hala, ondoren Arrheniusek Lurrari buruzko oinarrizko ezagutzak erabiliz kuantifikatu zuen efektua erakutsi zuen.

berotegi
1. irudia: Harvard Unibertsitateko klimaren arloko zientzialari Robin Wordsworth-ek mekanika kuantikora jo zuen karbono dioxidoaren xurgapen espektroa ulertzeko. (Iturria: Quanta Magazine)

Lurrak argi infragorrien modura irradiatzen du beroa. Honako hau da berotegi efektuaren funtsa: argi horren zati batek espaziora zuzenean ihes egin ordez, talka egiten du atmosferako CO2 molekulekin. Molekula batek argia xurgatzen du, eta, gero, berriro igortzen du. Gero, beste batek egiten du gauza bera. Batzuetan, argia lurrazalera jaisten da berriro. Batzuetan, espaziora igotzen da eta Lurra zertxobait hotzago uzten du, baina soilik atmosferako goiko geruza hotzetara bide irregular bat egin ondoren.

Gaur egun klimaren zientzialariek erabiltzen duten ikuspegi matematiko beraren bertsio oinarrizkoago bat erabilita, Arrheniusek ondorioztatu zuen CO2 gehiago gehituz gero, planetaren lurrazala berotu egingo litzatekeela. Neguan etxea beroago mantentzeko isolamendua gehitzea bezala da: galdarako beroa erritmo berean sartzen da, baina motelago egiten du ihes.

Hala ere, urte batzuk geroago, Knut Ångström fisikari suediarrak ezeztatze bat argitaratu zuen. Argudiatzen zuen CO2 molekulek erradiazio infragorriaren uhin luzera jakin bat baino ez dutela xurgatzen: 15 mikra. Eta ordurako nahikoa gas zegoela atmosferan Lurrak igortzen duen 15 mikrako argiaren % 100 harrapatzeko; beraz, CO2 gehiago gehitzeak ez luke ezer eragingo.

Baina Ångström ez zen konturatu CO2-a gai dela 15 mikrako uhin luzera handixeagoak edo txikixeagoak xurgatzeko, baina ez hain erraz. Argi hori gutxiagotan harrapatzen da espaziora egiten duen bidean.

Baina harrapatze tasa hori aldatu egiten da karbono dioxidoaren kopurua bikoiztu egiten bada. Kasu horretan, argiak molekulen kopuru bikoitza saihestu behar du ihes egin aurretik, eta bidean gehiagotan izaten da xurgatua. Atmosferako geruza altuago eta hotzago batetik egiten du ihes; beraz, beroa tantaka baino ez da irteten. Ia 15 mikrako uhin luzera horien xurgapen handiagoak eragiten du gure klima aldakorra.

Akatsak akats, Ångströmen artikuluak Arrheniusen teoriari buruzko zalantza ugari sortu zituen bere garaikideen artean, eta, ondorioz, aldaketa klimatikoari buruzko eztabaidak oso garrantzi gutxi izan zuen mende erdiz. Gaur egun ere, klima aldaketaren inguruan dagoen adostasunaren eszeptikoek, karbonoaren “saturazioari” buruz Ångströmek eman zuen argudio okerra aipatzen dute.

Oinarrira itzuliz

Hasierako garai haietan ez bezala, klimaren zientziaren aro modernoek aurrera egin dute, neurri handi batean gure atmosfera neurrigabe eta aldakorraren alderdi konplexu eta kaotikoak atzitzen dituzten eredu konputazionalei esker. Zenbaitentzat, horrek zaildu egiten du ondorioak ulertzea.

“Fisikari eszeptiko askorekin hitz egin dut eta beren eragozpenetako bat honako hau da: “Zuek eredu informatikoak baino ez dituzue egiten eta, gero, kutxa beltzeko kalkulu horren erantzunak onartzen dituzue; ez dituzue sakonki ulertzen”, azaldu du Nadir Jeevanjee-k, Estatu Batuetako Administrazio Ozeaniko eta Atmosferiko Nazionaleko (NOAA, ingelesezko sigletan) fisikari atmosferikoak. “Desegoki xamarra da arbela batean norbaiti ezin azaltzea zergatik lortzen ditugun lortzen ditugun zenbakiak”.

Jeevanjeek eta bera bezalako beste batzuek CO2 kontzentrazioak kliman duen inpaktua modu errazagoan ulertzeko helburua dute.

berotegi
2. irudia: Svante Arrhenius zientzialari suediarra izan zen, 1896an, Lurraren tenperaturak atmosferako karbono dioxidoaren mailen aldaketen aurrean duen sentsibilitatea zehaztu zuen lehena. (Iturria: Quanta Magazine)

Galdera gako bat berotegi efektuaren eskala logaritmikoaren jatorriari buruzkoa izan zen (ereduek aurreikusten dute CO2 bikoizten den bakoitzean tenperatuak 2-5 gradu egingo duela gora). Teoria baten arabera, tenperaturak oso azkar egiten zuen behera altitudean eta horren ondorio zen eskala. Baina, 2022an, ikertalde batek eredu sinple bat erabili zuen erakusteko eskala logaritmikoa karbono dioxidoaren xurgapen “espektroaren” formaren ondorio zela (argia xurgatzeko duen gaitasuna aldatu egiten dela argiaren uhin luzeraren arabera).

Itzul gaitezen 15 mikrakoak baino luzexeagoak edo laburxeagoak diren uhin luzera haietara. Xehetasun kritiko bat da karbono dioxidoak okerrago (askoz okerrago) xurgatzen duela uhin luzera hori duen argia. Xurgapena gailurraren bi aldeetara erortzen da eskala logaritmikoa sortzeko adinako abiaduran.

“Espektro horren forma funtsezkoa da”, dio David Romps-ek, Berkeleyko Kaliforniako Unibertsitateko klima fisikariak, 2022ko artikuluaren egileetako batek. “Aldatu egiten baduzu, ez duzu eskala logaritmikoa lortuko”.

Karbonoaren espektroaren forma ezohikoa da; gas gehienek uhin luzeren tarte askoz ere estuagoa xurgatzen dute. “Honako hau zen buruan nuen galdera: Zergatik du forma hori?”, dio Rompsek. “Baina ezin nuen arrazoia zehaztu”.

Ondoriozko mugimenduak

Wordsworthek eta Jacob Seeley eta Keith Shine egilekideek mekanika kuantikora jo zuten erantzunaren bila.

Fotoi izeneko energia paketeek osatzen dute argia. CO2 eta beste molekula batzuek xurga ditzakete soilik paketeek molekula bestelako egoera mekaniko kuantiko batera eramateko adinako energia dutenean.

Karbono dioxidoa “oinarrizko egoeran” aurkitzen da; hau da, bere hiru atomoek lerro bat osatzen dute karbono atomoarekin erdian, besteekiko distantziakidean. Molekulak egoera “eszitatuak” ere izaten ditu, eta, horietan, molekulak izurtu edo kulunkatu egiten dira.

15 mikrako argi fotoi batek karbono atomoak erdigunearen inguruan hula-hoop moduan mugi dadin beharrezkoa den energia du. Klimaren zientzialariek hula-hoop mugimendu horri egotzi diote berotegi efektua; baina, Ångström-ek aurreratu zuen bezala, eta Wordswortek eta bere taldeak aurkitu duten bezala, efektuak zehatzegia den energia kopurua behar du. Hula-hoop egoerak ezin du azaldu 15 mikratik gora fotoiek duten xurgapen tasaren murrizketa motela; beraz, bere kabuz ezin du klima aldaketa azaldu.

Deskubritu dutenaren arabera, beste mugimendu mota hori da gakoa; izan ere, oxigenoaren bi atomoak behin eta berriro mugitzen dira karbonoaren erdigunera eta erdigunetik, elkarrekin konektatzen dituen malguki bat luzatu eta trinkotuko balute bezala. Mugimendu horrek energia kopuru handiegia behar du Lurreko fotoi infragorriek beren kabuz induzitu dezaten.

Baina egileek aurkitu dute luzatzeko mugimendurako behar den energia hula-hoop mugimendurako energiaren ia halako bi dela, eta, ondorioz, bi mugimendu egoerak nahasi egiten direla. Badira bi mugimenduen konbinazio bereziak, eta horiek hula-hoop mugimenduaren energia zehatza baino gehixeago edo gutxixeago behar dute.

Fenomeno paregabe horri Fermiren erresonantzia deitzen zaio, 1931ko artikulu batean ondorioztatu zuen Enrico Fermi fisikari ospetsuaren omenez. Baina Lurraren klimarekin duen lotura Shinek eta bere ikasleak iaz argitaratu zuten artikulu batean zehaztu zen lehen aldiz. Udaberri honetako artikuluan azalduko da oso-osorik.

“Ekuazio honetan terminoak idatzi genituen unean ikusi genuen dena bat zetorrela, izugarria izan zen”, esan zuen Wordsworthek. “Azkenik mekanika kuantikoa eta multzoaren ikuspegia zuzenean lotzen direla erakusten digun emaitza da”.

Bere hitzetan, kalkuluak, nola edo hala, edozein eredu informatikok baino gehiago laguntzen digu klima aldaketa hobeto ulertzen. “Badirudi funtsean garrantzitsua dela eremu batean oinarrizko printzipioetatik abiatuta guztia nondik datorren egiaztatu dezakegula esan ahal izatea”.

Joanna Haigh, fisikari atmosferikoa eta Londresko Imperial College-ko irakasle emeritua, ados dago eta gaineratzen du artikuluak botere erretorikoa ematen diola klima aldaketaren defentsari; izan ere, erakusten du defentsa hori “mekanika kuantikoaren eta ezarritako fisikaren funtsezko kontzeptuetan” oinarritzen dela.

Aurtengo urtarrilean, NOAAko Monitorizazio Globaleko Laborategiak jakinarazi zuen atmosferako CO2-ren kontzentrazioak gora egin zuela: industrializazio aurreko milioi bakoitzeko 280 zatiko mailatik 2023ko milioi bakoitzeko 419,3 zatiko errekorrera. Horrek, oraingoz, 1 gradu Celsiuseko berotze zenbatetsia eragin du.


Jatorrizko artikulua:

Joseph Howlett (2024). Physicists Pinpoint the Quantum Origin of the Greenhouse Effect, Quanta Magazine, 2024ko abuztuaren 7a. Quanta Magazine aldizkariaren baimenarekin berrinprimatua.

Itzulpena:

UPV/EHUko Euskara Zerbitzua.

Utzi erantzuna

Zure e-posta helbidea ez da argitaratuko.Beharrezko eremuak * markatuta daude.