Mikrobio eta zelula asko lo sakonean daude, aktibatzeko une egokiaren zain. Biologoek deskubritu dute zelula batean jarduera bat-batean geldiarazten duen eta arintasun berarekin berriro aktibatzen duen proteina oso hedatu bat.
Duela gutxi jakinarazi da Balon izeneko proteinaren deskubrimendua. Proteina hori gai da proteina berrien zelula ekoizpena erabat gelditzeko. Balon permafrost artikoan hibernatzen duten bakterioetan aurkitu da, baina badirudi beste organismo askok ere ekoizten dutela eta bizitzaren zuhaitz osoan alde batera utzi den lozorro mekanismo bat izan daitekeela.
Bizi forma gehienentzat, isolatzeko gaitasuna bizirauteko funtsezko ahalmena da. Izan ere, edozein unetan aurre egin behar izaten diete elikagaien gabezia edo klima hotza bezalako baldintza gogorrei. Eta zorigaiztoko egoera horietan, etsi eta hil ordez, organismo askok lozorroaren artea menperatu dute. Beren jarduera eta metabolismoa moteltzen dituzte. Eta garai hobeak datozenean, biziberritzen dira.
Baina, benetan, egoera latentean egotea Lurreko bizitza gehienaren ohikotasuna da: estimazio batzuen arabera, zelula mikrobiano guztien % 60 hibernatzen ari dira une jakin batean. Zenbait organismotan, ez da gorputz osoa inaktibatzen (hala nola, ugaztun gehienetan), baina zenbait zelula populaziok atseden hartzen duten beren baitan, eta aktibatzeko une egokiaren zain geratzen dira.
«Lozorrotuta dagoen planeta batean bizi gara», adierazi du Sergey Melnikovek, Newcastleko Unibertsitateko biologo molekular ebolutiboak. «Bizitza, nagusiki, lo egotean datza».
Baina, nola da posible zelulek hori egitea? Urteetan zehar, ikertzaileek «hibernazio faktore» batzuk deskubritu dituzte, zelulek egoera latentea eragiteko eta mantentzeko erabiltzen dituzten proteinak. Zelula batek aurkako baldintza motaren bat detektatzen duenean (hala nola, gosea edo hotza), hibernazio faktoreen multzo bat ekoizten du, bere metabolismoa geldiarazteko.
Hibernazio faktore batzuek makineria zelularra eraisten dute; beste batzuek geneak adieraz daitezela eragozten dute. Garrantzitsuenek, aldiz, erribosoma desaktibatzen dute, proteina berriak eraikitzeko makina zelularra. Proteinen ekoizpenak hazkuntza prozesuan dagoen zelula bakteriano baten energia erabileraren % 50 baino gehiago hartzen du. Hibernazio faktore horiek harea botatzen dute erribosomaren engranajeetan, proteina berriak sintetiza ditzala eragotziz, eta, horrela, bizirauteko oinarrizko beharretarako energia gordetzen dute.
Urte honen hasieran, Nature aldizkariko argitalpen batean, ikertzaileek talde batek jakinarazi du hibernazio faktore berri bat deskubritu dutela, eta Balon jarri diote izena. Harrigarria bada ere, proteina oso arrunta da: haren sekuentzia genetikoaren bilaketa egiterakoak deskubritu zen sailkatutako genoma bakteriano guztien % 20an dagoela. Eta biologo molekularrek orain arte ikusi ez duten moduan funtzionatzen du.
Orain arte, erribosomak alteratzen zituzten hibernazio-faktore ezagun guztiek pasiboki funtzionatzen zuten: erribosoma batek proteina bat eraikitzen amaitu arte itxaroten zuten, eta gero proteina berri batekin hastea eragozten zioten. Balonek, berriz, esku balazta erabiltzen du. Zelularen erribosoma bakoitzean sartzen da, baita lanean ari diren erribosoma aktiboak oztopatzen baditu ere. Balonen aurretik, hibernazio faktoreak erribosoma hutsetan besterik ez ziren hauteman.
«Baloni buruzko artikulua xehetasunez beteta dago», komentatu du Jay Lennon biologo ebolutiboak, Indianako Unibertsitatean latentzia mikrobianoa aztertzen duenak (hark ez du ikerketan parte hartu). «Lozorroaren funtzionamenduari buruzko gure ikuspegia zabalduko du».
Melnikovek eta haren graduondoko ikasle Karla Helena-Buenok Balon deskubritu zuten Psychrobacter urativorans bakterioan; bakterio hori hotzera egokituta dago, izoztutako lurzoruetakoa baita, permafrost artikoan bildutakoa. (Melnikoven arabera, bakterioa lehen aldiz aurkitu zen 1970eko hamarkadan, izoztutako saltxitxa pakete bat infektatzen ari zela; eta, ondoren, berriro deskubritu zuen Craig Venter genetista famatuak Artikora eginiko bidaia batean). P. urativorans eta arruntak ez diren bestelako mikrobioak aztertzen dituzte, bizitzaren espektro zabalean erabiltzen diren proteinak eraikitzeko tresnen aniztasuna karakterizatzeko, eta ulertzeko nola egoki daitezkeen erribosomak muturreko inguruneetara.
Lozorrua hainbat baldintzek eragin dezakete, hala nola goseak eta lehorteek. Hori dela eta, zientzialariek ikerketa egiten ari dira helburu praktiko bat buruan dutela: «Baliteke ezagutza horiek gerora erabili ahal izatea klima epelagoetara egoki daitezkeen organismoak diseinatzeko», adierazi du Melnikovek. «Eta, beraz, klima aldaketara egoki daitezkeenak ere bai».}«Eta, beraz, klima aldaketara egoki daitezkeenak ere bai».
Hona hemen: Balon
Helena-Buenok kasualitatez deskubritu zuen Balon. P. urativorans konbentzitzen saiatzen ari zen, laborategian poz-pozik haz zedin. Baina, aitzitik, kontrakoa egin zuen. Kultiboa izotz kubo batean utzi zuen denbora luzeegiz, eta hotz kolpe bat aplikatzea lortu zuen. Bertan utzi zuela gogoratu zuenean, hotzera egokitutako bakterioak lozorroan zeuden jada.
Kultiboa alferrik ez galtzeko, ikertzaileek jatorrizko interesen bidean jarraitu zuten. Helena-Buenok hitzak eragindako bakterioetako erribosomak atera zituen eta cio-EM teknikaren pean jarri zituen. Crio-Em (mikroskopia elektroniko kriogenikoaren laburdura) egitura biologiko ñimiñoak bereizmen handian ikusteko teknika bat da. Helena-Buenok proteina trabatu bat ikusi zuen paralizatutako erribosomaren A lekuan, proteina berriak eraikitzeko aminoazidoak entregatzen diren «atean».
Helena-Buenok eta Melnikovek ez zuten proteina ezagutu. Izan ere, ordura arte inork ez zuen deskribatu. Beste proteina bakteriano baten antzekoa zen, erribosomaren atalak desmuntatu eta birziklatzeko garrantzitsua dena, hain zuzen; eta proteina hori Pelota deitzen da, gaztelaniazko terminoagatik. Eta horregatik deitu zioten Balon proteina berriari, “pelota”ren gaztelaniazko homonimo den “balón” hitzarengatik.
Balonek erribosomaren jarduera geldiarazteko duen gaitasuna egokitzapen kritikoa da estrespean dagoen mikrobio batentzat; halaxe azaldu du Mee-Ngan Frances Yapek, ikerketan parte hartu ez duen Northwesterneko Unibertsitateko mikrobiologoak. «Bakterioak aktiboki hazten direnean, RNA eta erribosoma asko ekoizten dituzte», adierazi du. «Estresatuta dagoenean, espezie batek itzulpen prozesua geldiarazteko beharra izan dezake», hain zuzen ere, RNA proteina berri bihurtzeko prozesua. Horrela, energia gorde ahal izango luke luzea izan daitekeen hibernatze aldirako.
Harritzekoa bada ere, Balonen mekanismoa prozesu itzulgarria da. Beste hibernatze faktore batzuk ez bezala, hazkuntza geldiarazteko sartu eta, ondoren, arin batean atera daiteke kasete zinta batekin. Ahalbidetzen du zelula bat arin sar dadila lozorro egoeran larrialdi baten aurrean, eta arintasun berarekin itzul ahal izan dadila bizitzara, baldintza hobeetara berregokitzeko.
Balonek gaitasun hori du erribosometara modu bitxian itsasten delako. Aurretik deskubritutako hibernatze faktore erribosomiko guztiek erribosomaren A lekua fisikoki blokeatzen dute. Hori dela eta, proteinak ekoizteko prozesuak abian badaude, horiek amaitu arte itxaron behar da faktorea elkartu ahal izateko, erribosoma desaktibatze aldera. Balon, berriz, kanaletik gertu jartzen da, baina ez hartan zehar. Hortaz, modu independentean mugi daiteke, erribosoma egiten ari dena alde batera utzita.
Balonen berritasun mekaniko hori gorabehera, proteina arrunt-arrunta da. Identifikatu ondoren, Helena-Buenok eta Melnikovek Balonen ahaide genetikoak aurkitu zituzten datu base publikoetan sailkatutako genoma bakterianoen % 20an. Texaseko Unibertsitateko Medikuntza Adarreko biologo molekular Mariia Rybaken laguntzarekin, proteina bakteriano alternatibo horietako bi karakterizatu zituzten: Mycobacterium tuberculosis giza patogenoaren bat, tuberkulosia eragiten duena; eta Thermus thermophilusen beste bat, P. urativorans aurkituko genukeen azken lekuan bizi dena, hau da, itsaspeko iturri hidrotermal ultraberoetan. Bi proteinak erribosomaren A lekuan elkartzen dira, halaber; eta horrek esan nahi du ahaide genetiko horietako batzuek, gutxienez, Balonen antzeko jokabidea dutela beste espezie bakteriano batzuetan.
Aitzitik, Balon ez da aurkitu Escherichia coli eta Staphylococcus aureus bakterioetan. Horiek dira zelulen lozorrorako gehien erabiltzen diren ereduak eta gehien aztertzen diren bakterio arruntenak. Laborategiko organismo gutxi batzuetan zentratzean, zientzialariek hibernatze taktika orokortu bat baztertuta utzi zuten, Helena-Buenoren hitzetan. «Naturan gutxi aztertutako txoko bat bilatzen saiatu nintzen, eta zerbait aurkitu nuen».
Mundu guztiak hibernatzen du
Zelula guztiek behar dute lozorroan egoteko gaitasuna, beren unearen zain. Melnikovek azaldu du E. coli bakterioaren laborategiko ereduak hibernatzeko bost modu ezberdin dituela, eta guztiak direla indibidualki mikrobioak krisi batean bizirauteko nahikoa.
«Mikrobio gehienak gosez hiltzen ari dira», adierazi du Lyongo Unibertsitateko Ashley Shade mikrobiologoak (hark ez du ikerketan parte hartu). “Premia egoera batean existitzen dira. Ez dira bikoizten ari. Ez dira beren bizitzarik onena bizitzen ari”.
Baina lozorroa ere beharrezkoa da gose aldietatik harago. Zenbait organismotan, ez da gorputz osoa inaktibatzen (hala nola, ugaztun gehienetan), baina, hala ere, zenbait zelula populazio aktibatzeko une egokiaren zain geratzen dira. Giza obozitoak inaktibo mantentzen dira hamarkadetan, ernalketarako zain. Gizakion ama zelulak hezur-muinean jaio eta inaktibo mantentzen dira, gorputzak deitzeko zain, orduan hazi eta bereizteko. Nerbio ehuneko fibroblastoak, immunitate sistemako linfozitoak eta gibeleko hepatozitoak fase latenteetan sartzen dira, inaktibo eta dibisiorik gabe, eta aurrerago berraktibatzen dira.
«Ez da bakterio edo arkeoen ezaugarri esklusiboa», adierazi du Lennonek. “Bizitzaren zuhaitzeko organismo guztiek dute estrategia hori lortzeko modu bat. Beren metabolismoa geldiaraz dezakete”.
Hartzek hibernatzen dute. Herpesaren birusak lisogenizatzen dira. Zizareek dauer etapa bat dute. Intsektuak diapausan sartzen dira. Anfibioek estibazioa egiten dute. Txoriak logalean. Eta hitz guzti horiek gauza bera adierazten dute: lozorro egoera bat, organismoek baldintza hobeak daudenean aldatu dezaketena.
«Hibernazioa asmatu aurretik, bizirauteko modu bakarra hazten jarraitzea zen, etenik gabe», azaldu du Melnikovek. “Bizitza pausan jartzea luxua da”.
Baita seguru mota bat ere populazio mailan. Zelula batzuek lozorro egoera bilatzen dute ingurunean aldaketak detektatuta eta horiei erantzuteko. Hala ere, bakterio askok estrategia estokastikoa erabiltzen dute. «Ausaz fluktuatzen duten inguruneetan, batzuetan, lozorro egoeran sartu ezean, populazio osoa desager liteke» hondamendiekiko ausazko topaketen ondorioz, azaldu du Lennonek. Are E. coli kultibo osasuntsu, alai eta hazkuntza arinekoenetan ere, zelulen % 5 eta % 10 artean inaktibo mantentzen dira. Horiek dira biziko direnak beren lehengusu aktiboago eta zaurgarriagoei zerbait gertatzen bazaie.
Zentzu horretan, lozorroa hondamendi globaletan bizirauteko estrategia da. Eta horregatik ari da Helena-Bueno hibernazioa ikertzen. Jakin nahi du zein espezie manten liratekeen egonkor klima aldaketa gorabehera, zeintzuk izango luketen berreskuratzeko aukera, eta zein prozesu zelularrek —hala nola Balonek bultzatutako hibernazioa— lagun zezaketen horretarako.
Melnikovek eta Helena-Buenok espero dute Balonen deskubrimenduak eta haren ubikuitateak jendeari lagun diezaioten bizitzan garrantzitsua dena birplanteatzen. Guztiak inaktibatzen gara askotan, eta askok benetan gozatzen dugu egoera horretaz. «Bizitzaren herena ematen dugu lotan, baina ez dugu horri buruz hitz egiten», komentatu du Melnikovek. Lotan gaudenean galtzen ari garenaz kezkatu beharrean, Lurreko bizitza guztiarekin konektatzen gaituen prozesua dela pentsa dezakegu, Artikoko permafrostaren sakontasunean lotan dauden mikrobioekin ere bai.
Jatorrizko artikulua:
Dan Samorodnitsky (2024). Most Life on Earth Is Dormant, After Pulling an ‘Emergency Brake’, Quanta Magazine, 2024ko ekainaren 5a. Quanta Magazine aldizkariaren baimenarekin berrinprimatua.