Unibertsoko egitura handienak mapeatzean, kosmologoek deskubritu dute anomalia kosmiko bat, dirudienez, desagertzen ari dela.
eRosita X izpien teleskopioak milaka galaxia kumulu detektatu zituen kosmosaren zati zabal batean. Irudian kolorez agertzen dira, teleskopioaren kokalekutik dauden distantziaren arabera. Urrunen dauden kumuluen argia duela 9 mila milioi urte igorri zen. (Simulazioa: MPE, A. Liu for the eROSITA Consortium – Copyright lizentziapean. Iturria: Quanta Magazine)
Kosmosaren tapiza elkarrekin gurutzatzen diren materiazko harizpi erraldoiek osatzen dute, eta haien elkarguneetan ehunka edo milaka galaxien kumuluak daude. Grabitateak galaxien kumulu bakoitzean dagoen guztia erdigunera erakartzen duen neurrian, galaxien arteko espazioa betetzen duen gasa konprimatu egiten da eta, ondorioz, berotu. Hala, X izpietan haren distira ikusi dezakegu.
eRosita X izpien teleskopioa 2019an bidali zen espaziora, eta bi urte baino gehiago igaro zituen espazio zabalean zehar energia handiko argi-izpiak biltzen. Datu horiei esker, zientzialariek milaka galaxia kumuluren kokalekuak eta tamainak mapeatu ahal izan dituzte; horietako bi heren ezezagunak ziren orain arte. Otsailaren 14an sarean argitaratutako artikuluen multzo batean (Astronomy & Astrophysics aldizkarian agertuko dira), zientzialariek azaldu dute nola erabili duten kumuluen hasierako katalogo hori kosmologiaren zalantza handietako batzuk ikertzeko.
Emaitzen artean kosmosaren heterogeneotasunari buruzko estimazio berriak daude. Azken aldian, eztabaidetan oso presente dagoen gaia da hori; izan ere, duela gutxiko beste neurketa batzuek agerian jarri dute nahiko homogeneoa dela. Horretaz gain, estimazio berriak aurkeztu dituzte neutrino deritzen partikula irrealen masari buruz, eta baita energia ilunaren propietate gako bati buruz ere, hau da, unibertsoaren espantsioa azeleratzen ari den energia aldaratzaile misteriotsuaren propietatei buruz, hain zuzen.
Kosmologoen unibertsoaren eredu nagusian, energia iluna espazioaren beraren energia da eta unibertsoaren edukiaren % 70 hartzen du. Unibertsoaren beste laurden bat materia ilun ikusezina da, eta % 5 materia arruntak eta erradiazioak osatzen dute. Eta hori guztia grabitatearen indarraren menpe dago. Hala ere, azken hamarkadako behaketa batzuek kosmologiaren “eredu estandar” hori zalantzan jarri dute; dena hobeto ulertzeko, ereduari osagaiak edo efektuak falta zaizkiola planteatu dute.
eRosita teleskopioaren behaketek, aitzitik, eredu estandar hori berresten dute alderdi guztiei dagokienez. «Eredu estandarraren ageriko baiespena da», adierazi du Dragan Hutererrek, lanean parte hartu ez duen Michigango Unibertsitateko kosmologoak.
Kosmosaren erradiografia
Big Bangaren ostean, unibertso jaio berriaren dentsitate aldaketa txikiak gero eta nabarmenagoak bilakatu ziren materia partikulak bata besteari itsasten ziren neurrian. Talde dentsoagoek material gehiago erakarri zuten, eta handiago egin ziren. Gaur egun, galaxia kumuluak kosmosean grabitazionalki elkartutako egitura handienak dira. Horien tamainak eta banaketa zehazteak aukera ematen die kosmologoei unibertsoaren bilakaeraren beren eredua frogatzeko.
Kumuluak aurkitzeko, eRositako taldeak algoritmo informatiko bat entrenatu zuen objektu zehatzen ordez X izpien iturri «oso harrotuak» bilatzeko; halaxe azaldu du Esra Balbulek, Garchingeko (Alemania) Lurraz haraindiko Fisikako Max Planck Institutuko zientzialariak, hain zuzen ere, eRositako kumulu behaketak zuzendu zituenak. Haren azalpenen arabera, hautagaien zerrenda “langin guztiz puru” batera murriztu zuten: zehatz-mehatz 5.259 galaxia kumulura, teleskopioak detektatutako 1 milioi X izpien iturrietatik abiatuta.
Ondoren, kumulu horien pisua zehaztu behar izan zuten. Objektu masiboek espazio-denboraren egitura kurbatzen dute eta igarotzen den argiaren norabidea aldarazten dute; horregatik dirudi argi iturria distortsionatuta dagoela. Fenomeno horri grabitazio-leiarraren efektua deitzen zaio. eRositako zientzialariek 5.259 kumuluetako batzuen masa kalkulatu ahal izan zuten, horien atzean dauden galaxia urrunenen gaineko leiar efektuan oinarrituta. Dena den, kumulu horien herenak bakarrik zituen atzealdean behar zen moduan lerrokatutako galaxia ezagunak. Nolanahi ere, zientzialariek deskubritu zuten kumuluaren masak korrelazio handia duela bere X izpien distirarekin. Korrelazio handi horri esker, distira erabili ahal izan zuten gainerako kumuluen masak neurtzeko.
Azkenik, masaren informazioa txertatu zuten kosmos biziaren ordenagailu bidezko simulazioetan parametro kosmikoen balioak inferitzeko.
Pikortasuna neurtzea
Unibertsoaren “pikortasun faktorea” (S8) zenbaki interesgarria da. Faktore hori zero balitz ezerez kosmiko zabal bat irudikatuko luke, arrokarik gabeko lautada bat. Batetik gertuagoko S8 balio batek haran sakonen gainean altxatzen diren mendi malkartsuak irudikatuko lituzke. Zientzialariek S8 balioztatu dute mikrouhinen hondo kosmikoaren (unibertso primitiboan jatorria duen argi zahar bat) neurketetan oinarrituta. Kosmosaren hasierako dentsitate aldaketak estrapolatzean, ikertzaileek espero dute S8 horren egungo balioa 0,83 izatea.
Baina duela gutxi argitaratutako ikerketa batzuek, zeinen bidez egungo galaxiak aztertu baitiren, % 8 eta % 10 arteko balio baxuago neurtu dituzte. Horrek esan nahi du unibertsoa nahiko homogeneoa dela. Diferentzia horrek kosmologoen jakin-mina piztu du, eredu kosmologiko estandarrean akatsak egon daitezkeela esan nahi baitu.
eRositako taldeak, aldiz, ez zuen diferentzia hori aurkitu. «Gure emaitza bat etorri zen hasieratik mikrouhinen hondo kosmikoaren aurreikuspenarekin», adierazi du Vittorio Ghirardinik, azterketaren zuzendariak. Ghirardinik eta bere kideek 0,85 balioko S8-a kalkulatu zuten.
Taldeko kide batzuk desengainatuta sentitu ziren, Ghirardiniren arabera, osagaiak falta izatea askoz zirraragarriagoa baitzen teoria ezagunarekin bat egitea baino.
S8-ren balioak, mikrouhinen hondo kosmikoaren estimazioa baino pixka bat altuagoa denak, beste talde batzuen azterketak eragingo ditu seguruenik, Gerrit Schellenbergerren arabera (Astrofisikako Harvard-Smithsonian Zentroan galaxia kumuluak aztertzen dituen astrofisikaria da). «Seguruenik hau ez da izango gaiari buruz ikusiko dugun azken artikulua», esan du.
Neutrinoak pisatzea
Unibertso primitiboan, neutrino ugari sortu ziren, ia fotoiak (argi-partikulak) bezainbeste, azaldu du Marilena Loverdek, Washingtoneko Unibertsitateko kosmologoak. Baina fisikariek badakite neutrinoek, fotoiek ez bezala, masa ñimiñoak izan behar dituztela, hiru mota artean oszilatzen dutelako. Partikulek ez dute masa eskuratzen beste oinarrizko partikula batzuek masa eskuratzen duten mekanismoaren bidez; hori dela eta, horien masa ikerketa askoren aztergaia da. Lehendabiziko galdera izango litzateke ea zein den horien benetako masa.
Kosmologoek neutrinoen masa neur dezakete kosmosaren egituran dituzten efektuak aztertuta. Neutrinoak ia-ia argiaren abiaduran mugitzen dira, eta bestelako materia zeharkatzen dute, hartara itsatsita geratu ordez. Hortaz, kosmosean neutrinoak egoteak kosmosaren pikortasuna ahuldu du. «Neutrinoei zenbat eta masa gehiago egotzi, orduan eta masa gehiago da homogeneoa eskala [handi] horietan», adierazi du Loverdek.
Galaxia kumuluen neurketak eta mikrouhinen hondo kosmikoaren neurketak konbinatuta, eRositako taldeak estimatu zuen neutrinoen hiru moten masen baturak ez dituela 0,11 elektronvoltak (eV) gainditzen, hau da, elektroi baten masaren milioirena bat baino gutxiago. Neutrinoekin eginiko beste esperimentu batzuetan muga txikiago bat ezarri da, eta erakutsi dute neutrinoen hiru masek 0,06 eV-ko batura eman behar dutela gutxienez (hiru masa balioen ordenamendu posible baterako), edo 0,1 eV-koa (alderantzizko ordenamendurako). Goiko eta beheko mugen arteko distantzia murriztu ahala, zientzialariak gehiago hurbiltzen ari dira neutrinoaren masaren balioa zehaztera. «Egia esan, aurrerapen handi bat lortzear gaude», adierazi du Bulbulek. Datuei buruzko ondorengo argitalpenetan, eRositako taldeak goiko maila alderantzizko ordenako neutrinoen masaren ereduak baztertzeko adina jaitsi lezake.
Zuhurrak izan behar gara. Existitu litekeen beste edozein partikula laster eta arinek (hala nola axioiak, materia ilunerako hautagai gisa proposatutako partikula hipotetikoak) efektu berberak izango lituzke egituren eraketan. Eta erroreak sartuko lituzkete neutrinoen masaren neurketan.
Energia ilunari jarraikiz
Galaxia kumuluen neurketek agerian jar dezakete nola hazi ziren egiturak, baina baita energia ilunak hazkuntza hori nola eragotzi zuen ere: espazioa inpregnatzen duen energia aldaratzailearen kapa fina, espazioaren espantsioa azeleratzen duena, materia banaraziz.
Energia iluna espazioaren beraren energia bada, kosmologiaren eredu estandarrak jasotzen duen moduan, orduan dentsitate konstantea izango luke espazio eta denbora osoan (horregatik, hain zuzen, esaten zaio batzuetan “konstante kosmologikoa”). Baina denborak aurrera egin ahala dentsitatea murriztu egiten bada, orduan egoera guztiz bestelakoa da. «Horixe da kosmologiak planteatzen duen galderarik garrantzitsuena», esan du Sebastian Grandisek, Innsbruckeko Unibersitateko (Austria) eRosita taldeko kideak.
Milaka kumuluen mapatik abiatuta, ikertzaileek deskubritu zuten energia iluna bat datorrela konstante kosmologiko baten profilarekin, nahiz eta horren neurketak % 10eko ziurgabetasuna duen; hortaz, oraindik ere posible da pixka bat aldatzen den energia ilunaren dentsitate bat existitzea.
Jatorriz, eRositak, Errusiako aireontzi batean dagoenak, zeru osoaren zortzi azterketa egin behar zituen, baina 2022ko otsailean, teleskopioak bosgarren azterketa hasi eta aste batzuetara, Errusiak Ukraina inbaditu zuen. Horri erantzuteko, lankidetzaren talde alemaniarrak, zeinak eRosita operatu eta zuzentzen baitu, teleskopioa modu seguruan jarri zuen, behaketa zientifiko guztiak etenda.
Hasierako artikulu horiek, beraz, lehendabiziko sei hilabeteetako datuetan oinarritzen dira soilik. Alemaniako taldeak espero du falta den behaketen urte eta erdian lau aldiz galaxia kumulu gehiago aurkitzea, gutxi gorabehera. Horri esker, parametro kosmologiko horiek guztiak zehaztasun handiagoz identifikatu ahal izango dituzte. «Kumuluen kosmologia zunda kosmologiko sentikorrena izan liteke, mikrouhinen hondo kosmikoaz gain», adierazi du Anja von der Lindenek, Stony Brookeko Unibertsitateko astrofisikariak.
Haren hasierako emaitzek frogatzen dute oraindik ia arakatu gabeko informazio iturri handia izango dela. “Auzoko bizilagun berria gara”, esan du Grandisek.
Jatorrizko artikulua:
Liz Kruesi (2024). Fresh X-Rays Reveal a Universe as Clumpy as Cosmology Predicts, Quanta Magazine, 2024ko martxoaren 4a. Quanta Magazine aldizkariaren baimenarekin berrinprimatua.