Zirkularki polarizatutako argia igortzen duten molekula kiralak

Argitalpenak · Dibulgazioa

Kiraltasuna nonahiko fenomenoa da naturan zein unibertsoan. Bizidunen organismorako ezinbestekoak diren hainbat biomolekula; hala nola, proteinak edo azido nukleikoak, kiralak dira, eta ezaugarri horrek hainbat prozesu fisiologikoetan parte hartzen du erantzun desberdinak sorraraziz enantiomeroaren arabera.

zirkularki
Irudia: (a) Dikroismo zirkularraren (DZ) eta (b) zirkularki polarizatutako lu-miniszentziaren (ZPL) oinarrizko fenomenoak molekula kiraletan, kuantifikazio-rako erabiltzen diren disimetria faktoreen kalkuluarekin batera (gabs eta glum, ab-sortzio eta igorpen prozesuetarako, hurrenez hurren). Laburdurak ekuazioetan: ɛ absortzio molarra da eta argia xurgatzeko ahalmena neurtzen du; I igorritako argi intentsitatea da. (Iturria: Ekaia aldizkaria)

Kiralak diren molekuletan, egitura bera eta bere ispilu irudia ezin dira gainezarri, eta beraien artean enantiomeroak dira. Bi egitura ezberdin dira eta bi portaera ezberdin dituzte argi polarizatuaren aurrean. Hori dela eta, molekula kiralak zirkularki polarizatutako argiaren aurrean aktiboak dira eta eskuinerantz edo ezkerrerantz bihurguneak eginez hedatzen diren izpiak bereizteko gai dira. Fenomeno horri dikroismo zirkularra (DZ) deritzo eta bere disimetria ahalmena kuantifikatzeko gabs terminoa erabiltzen da.

Zirkularki polarizatutako luminiszentzia

Horretaz gain, molekula kiral batzuk, zirkularki polarizatutako argia xurgatzeaz gain, zirkularki polarizatuta dagoen argia norabide zehatz batean igortzeko gai dira, eskuinerantz edo ezkerrerantz. Igorpen fenomeno horri zirkularki polarizatutako luminiszentzia (ZPL) deitzen zaio eta glum termino anisotropikoaren bidez kuantifikatzen da. Bi ezaugarri horien artean, ZPL fenomenoak arreta handia jaso du azkenaldian gailu fotoniko aurreratuak (hiru dimentsioko pantailak, argi igorle diodoak eta laser) garatzeko, telekomunikazioan informazioa gordetzeko eta prozesatzeko (spintronika), eta bioteknologian sentsore enantioselektibo moduan jarduteko. Horrexegatik, nanozientzietako eta kimikako baliabideak biziki aplikatzen ari dira ZPL-aktiboak diren molekula zein materiala kiralak garatzeko.

ZPL-a sortzeko estrategia desberdinak daude. Horien artean, egoera kitzikatuan kiralitatea eta luminiszentzia duten sistemak dira ohikoenak. Molekula hauen artean, lantanido konplexuak oso eraginkorrak dira glum balio handiak (10-1-10-2 inguru) erakusten dituztelako. Izan ere, lantanidoetan oinarritutako konposatu hauetan aktiboa den trantsizio elektronikoa, elektronikoki debekatuta baina magnetikoki baimenduta dago, eta horixe bera glum handiak lortzeko ezinbesteko baldintza da. Hala ere, azken ezaugarri horrek igorpen ahalmena nabarmen murrizten du. Ondorioz, lantanido konplexuen fluoreszentzia oso baxua da eta, beraz, bere ZPL distira (BZPL) eskasa.

ZPL distira hobetzeko tamaina txikiko molekula organikoak aproposak izan daitezke. Molekularen tamaina zirkularki polarizatuta dagoen argiaren helizearen bidea baino txikiagoa da, eta ondorioz, nahiz eta glum baxuagoa izan (10-3 inguru), fluoreszentzia igortzeko ahalmen handia izan dezake. Hala, ZPL distira onak eman ditzake. Gainera, ez dira toxikoak, merkeak dira eta euren egitura molekularra erraz alda daiteke beharren arabera. Azken ezaugarri hori oso garrantzitsua da, molekularen ezaugarri fotofisikoak zein kiroptikoak erreakzio kimikoen bidez eraldatu baitaitezke. Hala ere, diseinu erronka handia da bi arrazoirengatik, nagusiki: batetik, glum eta fluoreszentzia eraginkortasuna (f) handitzeko behar diren baldintzak guztiz kontrakoak dira eta, bestetik, ZPL distira areagotzeko glum eta f-ren arteko oreka bat lortu behar da.

Kromoforoak, aukera posibleak

Gaur egun, ZPL konposatu ohikoenak BINOL (1-1´-binaftilo-2-2´-diol) eta helizeno (konposatu aromatiko poliziklikoak dira orto posizioaren bidez kondentsatuta daudenak) molekulen eratorriak dira. Biak atropoisomeroak dira, euren enantiomeroen arteko elkar bihurtze langa energetiko handia delako egitura molekularraren zurruntasuna dela eta. Baina hainbat desabantaila badituzte. Alde batetik, BINOLaren absortzioa eta igorpena ultramore zonaldean dago, eta aplikazio fotonikoetarako batez ere ikusgaiko alde gorrirantz optikoki aktiboak diren molekula kiralak behar dira. Bestetik, helizenoen kasuan, sintesia luzea, konplexua eta garestia da.

BOro-DIPYrrometenoan (BODIPY) oinarritutako kromoforoak hautagai egokiak izan daitezke aurreko arazoak gainditzeko. Bere sintesia erraza eta azkarra da. Gainera, hainbat erreakzioren bidez funtzio-talde ezberdinak erantsi daitezke, eta bide batzez kromoforoa propietate fotoniko berriekin hornitu daiteke. Izatez, BODIPYa ez da kirala, dipirrometeno kromoforoa laua baita eta molekula simetria planoa baitu, baina aldaketa molekular aproposak eginda ZPL seinalea lortu daiteke.

Gure ikerketa-taldean, BINOL eta helizeno molekuletan oinarritu gara BODIPY kiralak garatzeko. Alde batetik, helizenoa abiapuntutzat hartuta, helikoBODIPYak sortu dira. Horiek eraikitzeko, bi BODIPY kromoforo elkartu dira difeniletilendiamina zubiaren bidez eta helize antzeko konformazioa inposatu da. HelikoBODIPYen zubian oztopo esterikoa areagotu ahala helizearen konformazioa hedatzen da eta gabs parametroa hamar aldiz handitzea lortu da, eta glum balioa bikoiztea ikusgai zonaldean (500-550 nm). Bestetik, BINOLa aitzindari kiral gisa ezagutzen denez, ikusgaiko zonalde gorrian fotoaktiboa den BODIPY molekulari boro zubiaren bidez erantsi zaio, BINOL-O-BODIPYak lortuz. Nahiz eta glum txikiagoa eduki, absortzio eta fluoreszentzia sendoagoak dituzte 800 nm-arte eta ZPL distira nahiko ona da.

Artikuluaren fitxa:

  • Aldizkaria: Ekaia
  • Zenbakia: 45
  • Artikuluaren izena: Argi polarizatu zirkularra igortzen duten molekula kiral adimendunak
  • Laburpena: Modu zirkularrean polarizatuta dagoen argia xurgatzeko eta batez ere igortzeko gai diren molekula zein material kiralen garapena egungo gaia da kimikan eta materialen zientzietan. Izan ere, biomolekula ugari kiralak dira eta haien portaera nabarmen aldatzen da molekularen konfigurazioaren arabera. Hori dela eta, argi polarizatua enantiomeroak bereizteko gai da, eta aldiz argi ez-polarizatuak ez du ahalmen hori. Kimika organikoaren inguruan egindako aurrerapenek kromoforo enantiomeriko puruak lortzea ahalbidetzen dute, bai eta haien oinarrizko egitura molekularraren birmoldaketa ere, dituzten ezaugarri fotonikoak hobetzeko. Segur aski, BINOLa eta helizenoa dira dikroismo zirkularra eta zirkularki polarizatutako luminiszentzia duten molekula kiral organiko ezagunenak. Hala ere, hainbat erronka gainditu behar dira haien portaera optikoa hobetzeko. Adibidez, interesgarria izango litzateke lan egiteko zona espektrala ultramoretik ikusgaiko alde gorrira eramatea eta molekula horien ahalmen fluoreszentea handitzea luminiszentzia polarizatuaren distira suspertzeko. Helburu horiek lortzeko, aproposak izan daitezke BODIPY izeneko koloratzaileak, duten kimika eta egitura aldakorrari esker aldaketak egin daitezkeelako egitura molekularrean eskaera kiroptikoen arabera. Hain zuzen ere, lan honetan BODIPY kromoforoan oinarrituta garatutako bi estrategia aurkezten dira kiraltasun moldagarria lortzeko; helikoBODIPYak eta BINOL-O- BODIPYak. Hurrengo lerroetan eztabaidatu egiten dira diseinu molekularraren motibazioa eta sistema optikoki aktibo gisa jarduteko dituen gaitasunak.
  • Egileak: Ainhoa Oliden-Sánchez, Natalia Casado, Edurne Avellanal-Zaballa, Rebeca Sola-Llano, Leire Gartzia-Rivero eta Jorge Bañuelos Prieto
  • Argitaletxea: UPV/EHUko argitalpen zerbitzua
  • ISSN: 0214-9001
  • eISSN: 2444-3255
  • Orrialdeak: 191-207
  • DOI: 10.1387/ekaia.24861

Egileez:

Ainhoa Oliden-Sánchez, Natalia Casado, Edurne Avellanal-Zaballa, Rebeca Sola-Llano, Leire Gartzia-Rivero eta Jorge Bañuelos Prieto UPV/EHUko Zientzia eta Teknologia Fakultateko Kimika Fisikoa Saileko ikertzaileak dira.


Ekaia aldizkariarekin lankidetzan egindako atala.

Utzi erantzuna

Zure e-posta helbidea ez da argitaratuko.Beharrezko eremuak * markatuta daude.